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1.  Introduction 

Many nonlinear dvnamical systems involving density waves 

can be represented by a system of partial differential 

equations: a nonlinear equation of wave propagation and an 

equation of eL'olution for a certain dvnamical variable. The 

d)mamical variable may be a f i e l d  as in the Schrodinger 

equation for solitons, or mav be a fluid velocity as in the 

Navier-Stokes equation of motion for compressible turbulence. 

The general study of coupling between the kinetic energy of 

turbulence and the wave energy belongs to the topic of acoustic 

turbulence, l s 3  , while the escitations of turbulence by wave 

motions cause a density-induced turbulence. The latter is 

treated here, because it occurs more frequently in the 

atmosphere in view of the general presence of the internal 

gravity wave and the mean density gradient. 

A kinetic method is developed in order to include those 

collectix7e phenomena which are otherwise not evident. By group- 

scaling, the master equation is decomposed into a hierarchy of 

scaled equations for the velocity distributions of decreasing 

order of correlation times, representative of the macro- 

el-olution. the transport property and the relasation. A cluster 

of distributions participates into the role of relasation for 

the approach of the transport property to equilibrium. I f  the 

cluster loses the individual identity of velocit\- distributions 

by rno\*ing together and behaving like a clump, an effective 

medium can be assumed and a closure is found. 
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By means of propagators that are modified to include the 

damping from the effecti\re medium, the eddy collision is 

calculated as an operator, and the kinetic equation for the 

macro-distribution is derived. I t  contains a memory 

representative of the collective behavior. 

Based upon the kinetic equation. the transport theories 

for the eddy diffusivitv and eddy viscosity are developed. Thev 

calculate the transport functions to govern the following 

processes. A mean density gradient or a large scale gravity 

wave may escite all the nonlinear mechanisms that control the 

density waves, i.e. the coupling mechanism for the excitation 

of turbulence and the cascade transfer from large toward small 

eddies. By the more efficient coupling mechanism, the density 

waves feed energy into turbulence that cascades down the 

xyelocity spectrum. 

The transfer function is found to have two memory-loss 

functions: one from the eddy collision as an operator, and the 

other from the Lagrangian correlation between the velocity 

distribution and the fluid velocity. The two memory-losses 

formulate a direct cascade toward small eddies and a reverse 

cascade toward large eddies. respectivel)?. The former i s  

relevant to the coupling subrange. 

Thesnectral intensity in the coupling subrange are found 

to hs\*e a K 2  law for the velocit>* and field (i.e. pressure 

gradient) fluctuations. and a li-' law for the density 

fluctuations. 

The formation of sawtooths3 in compressible turbulence can 
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be seen in numerical computation&. yielding a spectral 

intensity k-’, in deviation from the Kolmogoroff law5’6 of 

incompressible turbulence. 

2 .  Basic equations f o r  the description of the microdynamical 

state of density-excited turbulence. 

A The h>*drodynamic l’ariables are the fluid velocity u. L the 

densitt. f and the pressure $ . We write the density 

that is normalized by means of a constant density 4 , and write 

the thermal speed 
00 

A 
.A fluctuating ~~ariable is denoted by the symbol ( j ,  with 

It consists of the superposition of the ensemble average - 
)=(> and the deviation from the ensemble average, called the 

fluctuation ) .  For such a decomposition, we may use the 

operators z, x ,  such that 

N 

N d n 
.A = A  f A ,  

x 
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where 121 is the unit operator. The decomposition of a 

fluctuating function into an average and a fluctuation. as bs 

( A ) ,  is known as the Re5molds decomposition in turbulent flows. 

For a proper selection, we first examine the following models 

for the description of the microdynamical state of turbulence. 

(a) full Navier-Stokes model - -- 

The ?Javier-Stokes system consists of the equation of momentum 

and the equation of continuity 

n 
The driving field E is due to the pressure gradient and is 

given b5' the relation 
e 

A 4 

between E and N. The differentials are 
I 

and like other operators app1:- to the functions which follow. 

(b) acoustic turbulence model 

For describing the interaction between turbulence and 

finite amplitude density waves, we can transform the full 

Na\*ier--Stokes system in model (a) into the following simpler 
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moment um equa t i on 

and the equation of propagation of density waves 

with 

fi  A 

The relation between E and N remains to be ( i ) .  - 
The equation of propagation is obtained by cross 

differentiations of ( 5 )  and ( 6 )  with respect to t and x and by 

a subtraction 
Y 

It is to be recalled that the simple form of momentum 

equation (8) is obtained by an elimination of N between the two 
(c 

equations ( 5 )  and ( 6 )  of the full Navier-Stokes system. The 

same simple form of momentum equation is valid for 

incompressible turbulence as well with the divergence-free 

condi t ion 

A v * u .  s o .  ( 1 1 )  

_ _-  ( c )  Riemann's model 

I n  order to show the coiipling between momentum and density 

x 
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in a concrete manner, we transform the Navier Stokes system 

into the Riemann system in the form : 
- 
I 

The Riemann var i ab1 e 

a 

%I= 

A P 
relates w and 3, with a constant speed of sound c in isothermal 

gas and a variable speed in adiabatic gas. 
8 

Upon multiplying ( 1 2 )  and ( 1 3 )  b&' ii and iij, respectively, 
u 

and averaging, we find the equations of evolution 

f o r  the kinetic energ&- and the potential energy in homogenous 

turbulence. The equations are coupled by the function 

with a net zero balance. 

With the suppl>' 'by external source, the waive energy feeds 

an amount W to the kinetic energy. The latter then undergoes an 

internal cascade transfer from large into smaller eddies, to be 
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ultimately dissipated by viscosity. 

(d) kinetic model 

I t  is not difficult to verify that the two equations ( 5 )  

and ( 6 )  of the Navier-Stokes system are the first two moments 

of the master equation, written as 
9 

($ + i) {(t, I(, v )  = 0 
* -  

for the distribution function in the form 

as the condition of the normalization. i-e. 

The differential operator in the phase space t.x.v is: 
-I 

with 2 =>/as. 
c e 

(e) wal’e-kinetic model -- 

The present model uses the master equation (13) with the 

condition 
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to replace the momentum equation ( S )  of model (bb, while 

retaining the equation of propagation ( 3 ,  and the relation (7) 

for defining E-field. 
A 

-b 

Being homogenous and having the velocity 1' as an 

independent phase variable, the master equation has lesser 

nonlinearity. I t  is most equipped to treat the collisionless 

transport properties for the wave-induced turbulence. I t  

- 

proL7ides a mechanism of collisionless damping as the result of 

the interaction between the velocity distribution and waves. 

This property cannot be derived from the hydrodynamic approach. 

Among the kinetic methods, the wave-kinetic model is preferred, 

because it describes more explicitly the interaction between 

finite amplitude density waves and turbulence. 

The transformation of the Navier-Stokes equation into the 

master equation and the subsequent derivation of the kinetic 

equation of  turbulence hax'e been attempted by Yoninlo and 

Lundgren. But thes encountered the difficulty of kinetic 

hierarchy 1 ike in BCqOliuboV'S theory. To break the h erarchy, 

we introduce a method of decomposition into many scales 

11 

1 3  

3 .  Multi-scale group decomposition 

The h>-drodynamic equations and the master equation 

discussed above describe the microdynamical state of 
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turbulence. The?. contain too man?. minute details which are not 

suitable and necessar!' for the statistical treatment. We 

introduce a course-graining procedure called group-scaling by 

writing 
N 0 

A .A * A '  

1 
4 ' -  A +. A "  , 

as an extension of the Re?*noIds decomposition ( 5 ) -  The three 

groups 
0 .a , A ' ,  A "  

are called the macro-group, the micro-group and the submicro- 

group, respectively. while A' i s  called the submacro-group. 

The groups (24a)and the  fo l lowing  groups 
0 1 (2) A , .A , A , . . . 

must conform to the scaling differential 

of decreasing duration of correlations, indicating a decreasing 

coherence. 

The three groups (25a) represent the three processes of 

spectral e\?olution, transport property and relasation. The 

latter governs the approach of the transport propertj- to 

equilibrium. The decomposition gives the possibility of 

esploi t ing the propert&- of local quasi -homogenei t>- between any 

t w o  groups. This assumption implies that the interaction among 

the groups are restricted to nearest neighbor group-pairs. 

The fluctuating groups. as formed b?, the scaling operators 



10 

( ? % ) ,  are denoted bv the superscripts 

and 

in the open sequence and the closed sequence, respectitrely. 

For completeness we should add the cumulative operators 

- 0 

A = .1 .1 A '  f A * '  , 
2 

i vi ng the cumulative groups 

The deterministic transport properties and transport 

functions, as shaped by these fluctuating groups, are denoted 

by the superscripts 

with square brackets. 

The fluctuating groups may be Fourier transformed to find 

their cumulatiLPe spectral distributions, as follows 
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with the inequalities 

(30b) 

(30~) 

among the wavenumbers. They are independent variables or 

variables of  integrations. The limits of integrations are the 

demarcation wavenumbers of the three groups. The cumulative 

spectral distribution obviously yields the spectral density 

F ( k )  of field fluctuations by a simple differentiation with 

respect to k .  

E 

IC. Kinetic treatment of turbulence 

3.1 Effectil'e -- Fedium approximation for the closure of kinetic 

hierarchy 

In the statistical mechanics of many particles, the 

master equation generates a hierarchy of man>--particle 

distribution functions. Bogoliubov closed it at the triplet 

distribution in an arbitrary manner." Analogously, our master 

equation is expected to generate a hierarchy of scaled 
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equations by the group decomposition. We may choose a 

closed sequence (35a) or an open sequence (24b). The latter 

contains more information and is investigated here. 

The scaling of our master equation by the operators of 

open sequence yields the scaled equations 

f o r  the distribution of open groups, with the differential 

operators 

from (31). The scaled equations have their eddy collisions 

with the collision operators 

Through collisions each group i s  coupled to the next one 

by developing a hierarchy. Fhysical ly speaking (32) determines 
1 
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0 
the evolution of the velocity u and of its kinetic energy, and 

( 3 3 )  determines the transport property by (35b). Finally, the 
.... 

c 1 uster 

organizes 

approach 

cluster. 

a relaxation process for the transport property to 

its equilibrium and is called the relaxational 

Two methods are available for the closure. Firstly, the 

equation 

c - L"{ ($ + A"L,)f" - 2 (38) 

without collision may serve as a closing equation. It will 

calculate the collision by writing 

1 
2 2' 

and 

(39) 

The early cutoff neglects the col1ecti:e behavior of 

long range. Secondly, we realize that the problem of hierarchy 

can be found in many nonlinear dynamical systems. The familiar 

ones are the hydrodynamics of long chain molecules13 and the 

For these suspension of particles in Brownian movements. 

s5'sterns. the concept of an effective medium 15-16 that offers a 

15 
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Darcy damping has been introduced. Likewise, Heisenberg 

postulated an effective viscosity in his theory of 

turbulence. Hence as the second method of closure, we shall 

assume that the relaxational cluster of many distributions 

represents in its ensemble a porous medium that is frictional 

and presents a similar Darcy damping. We shall determine this 

damping by a self-consistent theory of collective phenomena. 

To elucidate this physical picture analytically. we take 

the moment of (33) to get the momentum equation in the form: 

The hydrodg.mamic friction is found as 

ta7 F 
= - Y  u. / 

( 4 2 )  

by ( 3 9 )  and ($0). It is proportional to the coefficient of 

damping 7 - Although it assumes the same role as the Darcy 

damping, it finds a self-consistent kinetic basis in ( 5 2 ) .  

k 7  

For the role of relasation, it is more important to 

retain the collective behavi’or than to discriminate the phase 

individualitr among the distributions in the cluster. Hence we 

can replace the cluster b>-an effective medium with the property 

( 4 2 ) ,  and write the approximation 

d 
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This simplifies (33) into the following 

with the differential operator 

5.2 Local quasi-homogeneity 

The scaling differential ( 3 5 )  permits the assumption of 

quasi-homogeneity among groups. Thus a low-order group of long 

correlation time can be assumed to.vary more slowly than does a 

higher-order group of shorter correlation time. BY applying the 

property of quasi-homogeneity at various levels, we find that 

the interactions between the nearest-neighbor groups are the 

most pronounced. Under this circumstance, we can simplify (33) 

and (54) into 

5 . 3  Macro-kinetic muation 

The integration of (46b) will be made by the intenrediary of the propagator 
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satisfies the differential equation 

The omission of Z o  in (56b) implies 9 

zP(t,t-.) 24 (t,t-T) . 

BY assumption ($8; we mas' use the average propagator to 

ca 1 cu 1 at e 

L i  
w i t h L = L  . By a substitution into (35b), we calculate the eddy 

collision 

with the collision coefficient 

and the eddj' diffusivity 
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By the scaling differential 

the upper limit t has been put t o m  without altering the value 

of the integral. The asymptoticity renders the diffusivity 

determini st ic . 
Finally upon substituting (50) into (&6a), we derive the 

kinetic equation for the macro-distribution in the form 

& + L '  Lo)#"= - Lb{ + e"'rp') 
that can be rewritten as 

(53a) 

by (51). The macro-kinetic equation possesses a memory as 

belonging to the non-Yarkovian behavior through the operator 

5. Derivation of the hydrodynamic equations of turbulence from 

the kinetic equation 

B)* taking the first moment of the macro-kinetic equation 

( 5 3 )  and with the condition (22) .  we obtain the momentum 
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equat ion 

- E o +  J 0  - 
e - %+M" t A o ~ O - ~ i . i o  - 

I 

The hydrod?-mamic friction takes the form 

or 

(54) 

Since the macro-kinetic equation (53) is an equation 

espl i it in fo without the involvement of f * ,  its moments wi 1 1  
0 

generate u and not u ' .  This is a consequence of the irrever- 
u - 

sibility of the macro-kinetic equation. This property has been 

observed in deriving the momentum equation (5Lc). 

The equation of kinetic energv is obtained upon multi- 
0 

pl>.ing ( 5 4 )  by u and taking an ensemble average. It has the 
* 

form 

with the following transport functions: 

C i )  The function 

is the rate of change of the kinetic energy. 

C i i )  The transfer function 
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fo'= - eo- J " )  ( 5 5 )  
.u 

governs the cascade transfer across the spectrum. The direct 

cascade is a transfer toward the la'rge wavenumbers, and the 

rex'erse cascade is a transfer toward the small wavenumbers. 

( i i i )  The coupling function 

governs the coupling between the kinetic energy spectrum and 

the density spectrum. It represents an excitation of the kine- 

tic energy of turbulence by the density rarefaction, i.e. w20. 
fa 7 

6. Transport theory of diffusion 

6.1 Laarannian correlation 

The diffusivity &I that is basic to the macro-kinetic 
u z 

equation is defined by (52) as the time integration of the 

Lagrangian correlation 

of E'-field fluctuations, wherev is the propagator for the 

evolution of E'(t-Z) along the trajectory that is perturbed by 

the differential operator ($5). 

lm 

- 

By Fourier decomposition of E'(t,x) into the frequency 0'' 
-.L - 

and wavenumber k".  we have 
A 

( 6 0 )  
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The Lagrangian correlation has the form 

where is the path-length in the time interval t . The 

damping dp? as a differential operatorhas its Four ie r  f o r m  
..I 

PI 
R 

7 . The first factor 

in the right hand side is the spectral function for the field 

fluctuations, and 

is the factor of truncation in a Fourier decomposition that is 

truncate3 within a time interval 2T and a length interval ZY in 

three dimensions. The spectral function is followed by a number 

of esponential functions, called the components of the orbit 

function. 

The component 

represents the linear streaming at velocity r in an unperturbed 

trajectory. It defines the Eulerian correlation 
- 

a 
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and forms the diffusivity 

in weak turbulence. 

The component 

represents the effective medium. By 

the esponential function 

can be written as the product of two components: 

(67) 

They represent the nonlinear streaming and the diffusive 

relaxation, respectively, along a trajectory that is perturbed 

b), turbulence. 

We are dealing witn strong turbulence, so that the linear 
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effect by the orbital component 

for streaming is negligible, escept when calculating the 

collision ( 5 1 ) .  

B3. collecting the components into the orbit function 

we can write the Lagrangian correlation in the form: 

and 

31 - 
The diffusivity ( 5 3 ) ,  rewritten as 

has a correlation time 

( 7 5 ,  

Here and in the following the integrals without limits are 

d 
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understood to estend from -a t o m .  

6.3 Path dispersion 

The evolution of the orbit is governed by the dvnamical 

equations in the form 

with initial conditions 

or, in the alternative form 

with the conditions 

A 

V(t-0) = 0 

at Z =o. 
The path 

can be decomposed into an ax'erage 

and a fluctuation 
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In stationary turbulence, the t-dependence can be neglected. By 

(Si), the path is independent of v. 
.c 

From (Src),we calculate the variance 

the diffusivity by path dispersion 
I r N  

and the integral 

The asymptotic values are: 

! i b  for large 7: 

with 

(90) 

(91) 

x 
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( i i  ) for small T 

with 

(95 )  

c. 1 
6.3 Orbital component ( ~ ' ; z J  

* 

Introduce the probability of retrograde transition 

P ( Q )  ( 9 6 )  

with the condition of normalization 

p,Q) - = I 0 (97 )  

to calculate 

The dispersion of path fluctuations is governed by the 

following equation of transition 
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rewritten in the form 

from (86,. 

By -Fourier decomposition with the formula 

we transform (99)  into 

and obtain the solution 

The coefficient x# is found by the condition (97), when we put 

B5- comparing ( 9 8 )  with (101),and using (103), we find 

(104) 

The ass-mptotic c'alue (90) at large is taken, in Xfiew of 
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the scaling differential 

The diffusivity &I, as belonging to the highest group, 

regulates the relasation, and wi 1 1  be cal led the relasational 

diffusivity. 

6.1 Orbital component j&'T 1 
BY the same procedures as f o r  ( l o & ) ,  we calculate 

(107) 

The asymptotic value (9s) at small t is taken in view of the 

scaling differential 

6.5 Collision diffusivity Dt*7 
u 
u 

B5' collecting all the components 

?y(T/Y) E e 
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of the orbit function X(tk'?lfrom (73). (73), (104). and (106), 

we determine the correlation time 
/-'- 

for the collisional diffusivity, which can now be written in 

the form 

(110a) 

(110b) 

a tensor and a trace, respectively. 

6.6 Relaxational diffusivity D P 3  

From our basic kinetic'system ( $ 6 )  for f 0 and f A. , 

that was used to derive the kinetic equation ( 5 3 )  and the 

diffusivity no 

esplicit governing equation like (35), but is represented by an 

effectiLre medium without identification of individual velocity 

distributions. This means that the collisional diffusivity 

and the relasational diffusivity of groups 

D l ' 7  it is seen that the submicro-group f" has 
u '  * 

u - 
.. . ( 1 1 1 )  D . D ,  

f d  c+3 

ha\*e to be treated differently. While the collisional 
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di f fusilri t?.' DQ1 is calculated by including a1 1 orbital 
e 

components, as being based upon the propagator, the 

relasational diffusivits of various groups do not have their 

individual kinetics and propagators, because they all form 

part of the same effective medium. For this reason, the 

diffusivities (111) are self-generating in the symbolic form 

(112) 

P3 
bv selecting the diffusive component 4 (k;p)of the orbit 

u 

function. 

Yore esplicitly, (112) is 

with 

Upon substitution, we obtain 

114') 

The use of (llO), ( 7 7 )  and ClOSc) has been made. 
p/1 

The diffusivities D and D p'7 have an identical 

integral structure, but with contingent limits of integration 

(1;",a3 and t k'", Q) ') 
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r0.3 
respectively, so that we can identifv as a diffusivity D 

in the integrand making (1151 an integral equation. For its 

solution, we differentiate (115) with respect to the lower 

limit of integration k", as denoted by an upper dot, and obtain 

the differential equation 

This is solved to give the diffus 

form 

vity for relaxation n the 

r 4  
The relasational diffusivity D forms the last link of the 

chain of many diffusitivities. The approximate formula 

provides with the necessarv relaxation process for the approach 
ct I of D to equilibrium and for the closure of the sequence of 

di f f usivi t i es. 

7. Enhancement of turbulence by density waves 

The momentum equation (5.5) can be written in the following 

alternative form: 

0 0 

/ 
c (11s) 

with the differential operator 

( 1 1 9 )  

a 
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The nonlinear term 
0 0  

K-VIA represents the - - -  steepening of sawtooth 

wat'es. The steepening cannot increase indefinitely to give rise 

to a discontinuity in view of the damping by fl' This damping 

has a kinetic origin as due to the interaction between the 

waves and the distribution function. 

By considering the left hand side of (lis) as the total 

time derivative, we can integrake to obtain the macro-velocity 

L 

and the diffusivity 

The asymptoticity is obtained on the same basis as for D". The 

evolution operator 24, determines the Lagrangian evolution of u o  
under the differential operator (119). The same earlier 

- - - 
c 

- 
argument has been used for approximating %by - The operator - Lc 

?,!*, being of hydrodynamic origin, does not involve v in the 

perturbed trajectory, so that D has the same structure as 
...L 

co3 - c 
P'l ''I from (110a), but D D is independent of v and has different 

u .-. - Y .I. 

limits of integration. Thus we can write 

with the correlation time 



32 

The orbit function 

and its components 

are modified forms of (73) and (108). Here the diffusion time 

is (3 , such that 
r'7-I 
D 

( p 3  - &kl2D 
!//so D -  - 3  ( 136) ... 

and the diffusivity 

has a correlation time 

d with the orbit function 

The use of (105), (110a), (109) and (73) has been made. 

(125) 

(129) 
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By comparing the trace of the diffusivity tensor (121) 

with the coupling function (59) we find 

with 

w 
.ry 

(130) 

(131) 

This diffusivity governs the enhancement of turbulence from the 
0 0 

coupling between E and u . In the spectral sense there is an 
r-. c 

enhancement of the velocity spectrum at the expense of the 

density spectrum by an amout $'I. 

8. Transport theory of cascade 

8.1 Twomemories of the transfer function - _.- 

In sections IC and 5 ,  we have derived the macro-kinetic 

equation (53) and the hydrodynamic equation of momentum (5&). 

The eddy collision is 

by (51; and the hydrodynamic friction is 
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by ( 5 5 b ) .  
0 

Upon multiplying by u and averaging, we have the - 
transfer function (5s) which we rewrite as follows: 

where 

( 1 3 5 )  

is a Lagrangian correlation. 

Like in ( 6 1 )  we use the Fourier method to transform ( 1 3 5 )  

and write 

with the Fourier component 

BS taking the moment, we ha17e the spectrum 

and the energy 

with the definitions 
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Bv substituting for the Fourier form of 

from (110a) and (136a), we transform (134) into 

For the sake of abbreviation, we introduce the partition 

function 

The dependence of 

on 

is understood by their definitions. 

In order to simplify the expression (140), we consider the 

following properties: 

( i )  In strong turbulence, the streaming effect by v in h 
* V 

is negligible, escept with the derivatives 

a 
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and 

and with similar derivatives of hck"). 
re3 li 3 

C i i ,  Since T is finite and real, and so is /3 d h  , 

the integrand i n  (139) must>be even. This rules out the 

contribution by 34. 
& 

C i i i )  With the partial integration with respect to v, we 
c 

have 

( i v )  The transfer function controls the transfer of energy 

across the spectrum. Consequently, the integrand of (139) must 

retain v . .  
L 

By means of these properties, we can simplify the 

partition function (110). We write 

and c a l c u l a t e  t h e  two components 
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The two memory-loss functions are: 

and 

The loss of v in the orbit function makes the memory-loss 
w 

functions only dependent on the wavenumbers k', k" as scalars. 

It is seen that ( l A c 4 )  describes the partition of the macro- 

energy of turbulence in the k'-space, while accounting 
c 

for the memorv losses along the two orbits. of orbit functions 

*.. H. 

BY the two memory losses, the transfer function (139) can also 

be divided into two parts, as follows: 
c-3 

(T k .  ) 

aL 

103 lo 7 
T = (T  

with 

fo? 
The transfer function i s  energized by the macro-energy (ky 

and is diffused by the micro-field fluctuations of intensity 

s ~ I ( k ' * ~ .  Since the process takes place in the Lagrangian space, 

the two orbit functions cause two memory losses. 

a 
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8 . 2  Direct and reverse cascades - 
By noting the scaling differential (35) and by making use 

of the properties 

reduce (146aj and 

of the partition function mentioned above, w e  

(146b) into 

We can see that the loss of memory is effectively caused 

by the orbit function 

as the result of the perturbations of the trajectory carrying 

the field 

c.3 for shaping the diffusivity D . The other orbit function 

merely serves to provide a macro-gradient of a spectrum 

by the transformation 

The substitution of (is91 into (l.?IS) leads to the transfer 

function in two components: 

d 
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with 

We write {153) in the following concise form 

after a rearrangement by separating the variables k', 

governing functions are: the vorticitv function 

and the eddy damping 

{ 153b) 

k". The 

(156) 

The modulation function 

J 
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finds a modulation time T &/ . J 1 
The orbit function h(k",t. \'=Ob represents a damping as 

% 

the result of the perturbations of the trajectory. It 

determines the relaxation for the approach of the diffusivity 

D to equilibrium. Likewise it determines. by (157), the time 
c/ 1 

C j ?  
rM of modulation for the approach of the eddy viscosity (155) 

and the damping coefficient (156) to equilibrium. 

The two parts (153ai and(153b) of the transfer function 

contain the second moments (1%) and (156) of the spectral 

distributions with limits of integrations 

(o ,k i )  and ( k . m  5 ,  

respectively. The two moments gain their importance for large 

and small values of k. respectively. Hence we can conclude that 

the two parts (153a) and (153b) of the transfer function 

control the direct cascade near a sink at large k and the 

reverse cascade near a source of small k. respectively. 

In his theory of incompressible turbulence, Heisenberg has 

proposed a transfer function in the form of a product of the 

vorticity function with the eddy viscosity5 His formalism was 

based upon the empirical concept of mixing-length. In addition, 

he proposed an empirical formula of eddy viscosity on the basis 

of dimensional consideration. Here we have developed a kinetic 

theor)' of transport for the transfer process. Our analytical 

formula of transfer (153a) by direct cascade supports his 

phenomenological formalism. Our theoretical result of eddy 
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viscositv (155) is based upon the macro-kinetic equation and 

has undergone the process of relaxation, modulation and memory 

losses. I t  is obviously more complicated than Heisenberg's 

f ormula. 

En analogy with the derivation of the kinematic viscosity 

by the kinetic theory of gases, the derivation of  the eddy 

viscosity needs the kinetic equation as an essential basis. 

This explains why a purely hydrodynamical method, e.g. the 

direct interaction ap~roximation,~~ cannot produce an eddy 

viscosity. 

8.3  Modulation function 
r/ 7 

The modulation function G (k") in (157) controls the 

eddy viscosity (155) and the eddy damping (156), and is 

calculated by the second moment of the orbit function of three 

of time scales as given bv the inverse of the frequency scales 

(159) 

respectively. Each component could form its own individual 

modulation. An approximate evaluation of the second moment of 

(158) gives the composite modulation, as defined bv (157) with 

a time scaleT such that 
PI 

& 
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is the resultant of the frequencv scales (159). The numerical 

coefficients are adjusted in such a way that the formula (160) 

gives the esact values of the three individual modulation 

functions at the three- scales (153). Thus the formula (160) f o r  

the composite modulation is an interpolation of three esact 

components. 

8.4 Identification of the effective medium --  
From (153a1, we see that the eddy viscosity Kc" describes 

the turbulent property of the medium of small eddies that carry 

the E'-field fluctuations. 
u 

On a phenomenological basis, we can conceive that this 

medium offers a friction 

L 

0 

to the evolution of u , and causes an energy dissipation 

(161) 

to the energy balance in homogenous turbulence. Since the 

energy dissipation (162) is the result of interaction between 

the micro-group and the macro-group, we see here that the 

physical picture of cascade emerges. By pursuing the comparison 

of (161) with (131, we can identity 

x 
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for the micro-group, and similarls for the submicro-group 

Recall that the realization of a direct cascade requires a 

transfer of  large wavenumbers in a transport of the gradient 

tspe. Both conditions are met by the effective medium that 

represents the cluster of high-order distributions. 

The identification of the effective friction eddy 

viscositv in (163) connects the concept of effective medium to 

the kinetic basis of cascade process in a self-consistent way. 

9. Equation of state of turbulence 

9.1 Local nonlinearity 

The density-induced turbulence is governed by the 

following system of two differential equations: 

with the driving forces 

and 
A 

from (SI, ( 9 ) ,  ( 7 )  and (lo), respectivelh,. 

The system describes the microdsnamical state of the 
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interaction between turbulence and finite amplitude density 

waves. The Navier-Stokes equation (16.Ic) is obviously nonlinear 

by its advection ; ; - V U .  and is also nonlinear by the driving 

force E. The latter nonlinearity arises from the wave 

f i  

..- u 
A 

propagation by the definitions ( 1 6 6 )  and (167). Such a form of 

nonlinearity also appears in soliton dynamics and is called the 

modulational nonlinearity. lS I t  is non-local (in time) as in 

( 1 6 5 ) ,  or is local in the form 

as obtained by assuming that the temporal derivative is small 

as compared to the spatial derivative. This .is the case with 

the strong turbulence in cascade process. 

By taking the divergence, we transform (168 )  into the 

following Poisson equation 
A 4 

V - E  = v . + v . r / 2 c :  
- #  - N b  - -  

The approximation is made bv assuming that the transverse modes 

of turbulence are dominant in wave scattering. The Poisson 

equation clearly indicates the locally nonlinear character of 

19 

the source in driving the turbulence. 

An equation of state is obtained, first in the barotropic 
A n 

form ( 7 )  for relating E to N through the speed of propagation 

( 3 ) ,  and then in the Poisson form ( 1 6 9 )  for relating E" to ^u by 

assuming a transverse scattering o f  waves. 

-L 

e L 
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9.2 Scattering function r" 

The scattering function of the macro-group is 

< 170) 

by (169). The intensity is obtained by the mean square value 

The differential V does not extend beyong the immediate function. 
For 

- 

we shall decouple into double products by approximation. The 

approximation is legitimate when it does not deal with a 

process, as is the case with (170) .  We find 

(173) 

by Fourier transformation, where ?( is the factor of truncation 

of the Fourier decomposition. 

A homogenous turbulence has the following property 

and similarl\-. we have 

d 
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By the properties (17 ) ,  we can simplify (173) into 

o"> = iL RCO', 
4 

c"7 
where R is the vorticity function as defined by (15Lc). 

(176) 

By a Fourier transformation of (163) and with the aid of 

< 176), we obtain 
COI fol 2 

€ 3  R =-R / (177) 
0 P 7 

where R is the vorticity function of u -fluctuations, as 

defined by (15Lc! and 
- 

0 
is the vorticity function of E -fluctuations. - 

We convert(177) into- the spectral form, by writing 
&" k"tF(k'Y = 2 x c b c  kk"R'LF(k"IJ R &'k''F,&') 

E 3 Jk 
= k x g  J " R  &"k"'F,(k~JkhA' k"i$?. 

ti 
0 

(179) 

z c  

3 0 0 
The inner integral accentuates large values of 1;' near k". and 

as a first approximation can be written as 

yielding the relation 

or, after a differentiation, 
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I 

The approsimation is valid for small k and even smaller k" as 

in the case with the coupling subrange. 

The relations (177) and (1S2) are the equation of state in 

the s-space and k-space. respectively. 
u 

10. Spectrum of the enhanced turbulence. 

10.1 Energy spectrum in the @upling Subranne 

In the coupling subrange, the turbulent energy is enhanced 

at the espense of  the potential energy. The governing equation 

of energy balance is (130), rewritten as 

or 

-2 
(time) . 

The equation (193a) describes the balance between the 

coupling function as a spectral source and the cascade transfer 

as a spectral sink at the larger end of the spectrum. 

Therefore. the formula (153a) of the transfer by direct 

is taken. 

An inspection of (1S3b) reveals that ans function 

the dimension of time is independent of k. 

For describing the energy flow, we differentiate 

with respect to 1;. as denoted by an upper dot, to get 

cascade 

hav i ng 

(1S3a) 
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CO7 in \?iew of small R . In terms of the spectral distributions, 

(185) 

-i - 
ha\?ing the dimensions of (time) , is independent of k .  Another 

differentiation of (155) leads to 

The factor 

is again independent of E;. 
c03 I.3 

Since 5 is the time of steepening of sawtooth, and t is 
the modulation time for the cascade of energy, the balance 

M 

for the 
tLc 

between the two processes gives the duration 

enhancement of turbulence. 

B)' the definitions (133) and (157), we can write 

as related to the normalized second moment of the orbit 

function +)( * 

v = o  
i 

CI 
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10.2 Spectrum of field and $ensitv fluctuations the couplinq 

.ubranne 

By the use of the equation of state (182). the relation 

(165b) and the spectral result (186). we derive the spectral 

distributions of field and density fluctuations as follows: 

10.3 Spectral intensities 

By introducing the spectral intensities 

(190b) 

(190c) 

the results (1S6), (139a) and (189b) for the spectral densities 

can be converted into the following : 
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It is to be noted that the spectral results for 

velocity and field fluctuations are independent of c ,  while the 

spectral results for density fluctuations will depend on c ,  For 

the density spectrum, c enters as a constant parameter, 

implying an isothermal propagation. 

The coupling subrange is located between the production 

subrange and the inertia subrange, with the mean density 

gradient and the rate of energy dissipation as the respective 

external parameters. It possesses the two parameters: the 

constant speed of propagation in isothermal gas that enters 

into the equation of propagation as en external parameter, and 

the constant time scale of enhancement of turbulence as an 

internal parameter. 

11. Discussions and conclusions 

In incompressible turbulence, the agent of production of 

turbulence is usually the mean gradient of the velocity itself. 

However, if the density mas fluctuate. such as in convective 

turbulence, acoustic turbulence, density -induced turbulence, 

and other types of compressible turbulence, the turbulent 

motion may interact with the large- amplitude density waves. If 

the turbulence motion is intensified by the density waves, we 

call it density-induced turbulence. The processes are as follows: 

often a mean density gradient is more likely to be found than a 

mean velocity gradient. I t  excites all the nonlinear mechanisms 

that controls the density waves, i.e. the density-velocity 

coupling among large eddies. and the cascade transfer from 
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large toward small eddies. 

If the coupling by large eddies is more intense than the 

transfer, the density fluctuations will mainly go to feed the 

kinetic energy for its continuing cascade toward smaller ed- 

dies, and consequently the density spectrum will fall rapidly. 

At increasing wavenumbers. the tail portion of the velocity 

spectrum is governed by the balance between the cascade trans- 

fer and the viscous dissipation. 

We need a mathematical model to describe these processes 

indensity -induced turbulence. In Section 2 , we have named 

several mathematically equivalent models. The Navier-Stokes 

model (a) and its kinetic correspondent (d) are too formal for 

the purpose. The Riemann system (cj has the merit of illustra- 

ting the build-up of the kinetic energy of turbulence at the 

expense of the wave energy. By the svmmetry, the system does 

not distinguish the different physical roles from the two 

equations. The acoustic turbulence model (b) that has clearly 

put the propagation into evidence is more suitable to treat the 

density -induced turbulence. In order to include those transport 

properties which take their origin from the velocity distribu- 

tion of eddies, we choose a kinetic approach in the wave- 

kinetic model (e), upon replacing the Navier-Stokes equation of 

motion by a master equation. By group-scaling, we decompose the 

master equation into scaled equations for the distribution 

functions of many scales. The closure is found by considering 

those groups which form a relaxational cluster as an effective 

medium having self-consistently the same transport property as 
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the cluster itself. As a result, the kinetic equation for the 

macro-distribution can be used to derive the tra ort func- 

tions !coupling function and transfer functi ) ,  the tr 

Properties (eddy diffusivit?’ and eddy viscosity). and 

to find the spectral functions. The spectral ntensities in the 

coupling subrange are found t o  halve the power 1 for the 

velocity and field fluctuations and the power law k - $  for the 

densitv fluctuations. This is the first time that a kinetic 

equation for the singlet distribution (macro-distribution) can 

determine the spectral structure of turbulence without the need 

of the pair-distribution. 
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